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ABSTRACT 
On  the  pattern  of  the  most  classical  fixed  point  theorem.  viz.  the  Banach  contraction  theorem,  now  the
mathematicians are using Jungck contraction theorem for various applications. In this paper I proved some new
theorems on fixed point which is further development of results of Tripathi and Mishra [8]

I. INTRODUCTION

The concept of fuzzy set is introduced by Zadeh [10] and then Kramosil and Michalek [7] defined fuzzy metric
space by using of continuous t-norm. In 1999 Vasuki [9] proved some fixed point theorems in fuzzy metric space fpr
R-weakly commuting mappings. Rhoades [5] gave an open problem “ whether there exist a contractive definition
which is strong to generate a fixed point but which does not force the map to be continuous at the fixed point”.
Balasubramaniam et al. [1] proved the open problem of Rhoades [5].

In 1986 Jungck [4] introduced the notion of compatible mapping and proved common fixed point for two mappings
after this Singh and Jain [6] defined semi compatible mapping in fuzzy metric space and using this concept they
proved common fixed point theorem for four self-mapping mapping on fuzzy metric space, further Tripathi et al. [8]
improved the result of Singh and Jain       

DEFINITION 1.1. [7] A binary operation 
 :[0,1] [0,1] [0,1]  

 is said to be continuous t–norm if  *  satisfies
the following conditions:

(i) *  is commutative and associative.
(ii) * is continuous.

(iii) a * 1 = a  for all 
[0,1]a 

.
 whenever  and  for all , , , [0,1].a b c d a c b d a b c d     

DEFINITION 1.2. [7].  The three tuple (X,  M,  *) is said to be fuzzy metric space if  X is an arbitrary set,  *  is a

continuous t-norm and M is a fuzzy set in  

2 [0, )X  
  satisfying the following conditions for all  x, y, z  in  X and

s, t  > 0; 
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          (i)  ( , ,0) 0,

         (ii)  ( , , ) 1,  if and only if ,

        (iii)  ( , , ) ( , , ),

        (iv)   ( , , )  ( , , )  ( , , ),

and   (v)  ( , , ) :[0, ) [0,1]  is left continuo

M x y

M x y t x y

M x y t M y x t

M x y t M y z s M x z t s

M x y



 



  

   us.

DEFINITION 1.3 [3].  Let (X, M, *) be a fuzzy metric space. A sequence 

{ }nx
 in X is said to be convergent to a

point x  in  X  if 

lim ( , , ) 1n nM x x t 
  For all  t > 0.

Further the sequence 

{ }nx
 is said to be Cauchy sequence in  X  if 

                         

lim ( , , ) 1n n n pM x x t  
  for all  t > 0  and  p > 0.

The space (X, M, *) is said to be complete if every Cauchy sequence in it converges to a point of it. 
In this paper, (X, M, *) is considered to be the fuzzy metric space with the condition, 

                  

lim ( , , ) 1n M x y t 
  for all  x, y  in  X.                                 (1.1)

LEMMA 1.2  [2]. Let 

{ }ny
 be a sequence in fuzzy metric space (X, M, *) with the condition (1.1). Suppose there

exists a number 
(0,1)k 

such that, 

2 1 1( , , ) ( , , ),n n n nM y y kt M y y t  
   for all t > 0.

Then 

{ }ny
 is a Cauchy sequence.

DEFINITION 1.4. [2]  Let  f  and  g  be mappings from a fuzzy metric space (X, M, *) to itself. The mappings are
said to be weak compatible if they commute at their coincidence points, that is, 
fx  =  gx   implies that    fgx   =   gfx.

DEFINITION 1.5. [2]  Let  f  and  g  be mappings from a fuzzy metric space (X, M, *) to itself. Then the mappings
are said to be compatible if,

lim ( , , ) 1,    0,n n nM fgy gfy t t   
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whenever 

{ }ny
 is a sequence in X such that,

lim lim .n n n nfy gy x X   

PROPOSITION 1.1 [4]. Self mappings  f  and  g  of a metric space (X, M, *) are compatible, then they are weak
compatible.

DEFINITION 1.6  [6].  Let  f  and  g  be mappings from a fuzzy metric space (X, M, *) to itself. Then the mappings
are said to be semi compatible if 

lim ( , , ) 1,    0,n nM fgy gx t t   
whenever  

{ }ny
 is  a  sequence  in  X such  that,

lim lim .n n n nfy gy x X   
 

Singh and Jain [6] proved that if the mappings  f  and  g are semicompatible, then they are weak compatible without
the converse being true.

II. MAIN RESULTS

THEOREM 2.1.  Let  (X, M, *)  be a fuzzy metric space and Y  is an arbitrary set. Suppose  
(0,1)k 

  and
, , ,:f g h Y X

 are mappings such that,
            ( ) ( , , ) max{ ( , , ), ( , , )}    ,  and  0,

            ( )  ( ) ( ) ( ),

 and     ( ) one of  ( ) , ( ), ( )  is  complete.

i M fx gy kt M hx hy t M fx hx t x y Y t

ii f Y g Y h Y

iii f Y g Y h Y

   

 

Then f, g and h have coincidence point.

PROOF. For 
0p Y

 there exist 
1 2,p p Y

 such that 
0 1 1 2,fp hp gp hp 

 (because
( ) ( ) ( )f Y g Y h Y 

).

Inductively we can construct a sequence 

{ }np
such that    

2 2 1 2 1 2 2,   n n n nfp hp gp hp   
. Putting

2 2 1 and n nx p y p  
 in (i), we have

2 2 1 2 2 1 2 2

2 1 2 2 2 1 2

 ( , , ) max{ ( , , ), ( , , )}

i.e.  ( , , ) ( , , ).  

n n n n n n

n n n n

M fp gp kt M hp hp t M fp hp t

M hp gp kt M hp gp t

 

  




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So by Lemma 1.1  

{ }nhp
  is a Cauchy sequence. Suppose   h(Y)   is complete. Then  

{ } ( ).nhp p h Y 
  Also 

then there exists 
u Y

 such that 
.hu p
 Putting 

2 1, nx u y p  
 in (i), we have,

2 1 2 1( , , ) max{ ( , , ), ( , , )}.n nM fu gp kt M hu hp t M fu hu t 

Therefore, in limiting case as 
,n  

( , , ) max{ ( , , ), ( , , )}

i.e.   ( , , ) ( , , ).

M fu p kt M p p t M fu hu t

M fu p kt M fu p t





Hence        
( ) ( ).f u p h u 

 Lastly, putting  
2 1,  nx p y u 

 in (i), we have

2 1 2 1 2 1 2 1( , , ) max{ ( , , ), ( , , )}

i.e.   ( , , ) ( , , ).

n n n nM fp gu kt M hp hu t M fp hp t

M p gu kt M p p t

   



Therefore  
( ) ( ).p gu f u h u  

 Hence u is coincidence point of f, g and h.

THEOREM 2.2. Let  (X, M, *) be a fuzzy metric space. Suppose  
(0,1)k 

  and  
, , ,:f g h X X

 are 
mappings such that,
            ( ) ( , , ) max{ ( , , ), ( , , )    ,  and  0,

            ( )  ( ) ( ) ( ),

           ( ) one of  ( ) , ( ), ( )  is complete,

and      ( )    and    are coinciden

i M fx gy kt M hx hy t M fx hx t x y X t

ii f X g X h X

iii f X g X h X

iv f h

   

 

tly commuting.

Then f, g and h have a unique common fixed point.

PROOF.  In the theorem 2.1 if we take Y = X then we get  
( ) ( ).p gu f u h u  

Since f and g are coincidently commuting so,
  and  .fhu hfu fp hp 

Putting 
2 1,  nx fu y p  

 in (i), we have,

2 1 2 1( , , ) max{ ( , , ), ( , , ).n nM ffu gp kt M hfu hp t M ffu hfu t 
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Taking
n  

, we have, 
( , , ) ( , , ).M ffu p kt M fp p t

 Therefore 
.fp hp p 

Again putting 
2 ,   nx p y p 

in (i) and taking limit as  
n  

  we get,
.gp fp hp p  
Hence p is a common fixed point of  f, g and h.

For uniqueness suppose p and q are common fixed points of  f, g and h.

Then by putting 
,   x p y q 

in (i) we get  p = q. This proves the uniqueness
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